sulfonated porous carbon (spc): an efficient and recyclable solid acid catalyst for one-pot three-component synthesis of 2,3-dihydroquinazolin-4(1h)-ones under solvent-free conditions
Authors
abstract
a simple and efficient procedure has been developed for the synthesis of 2,3-dihydroquinazolin-4(1h)-ones derivatives under solvent-free conditions. this method uses the condensation of isatoic anhydride, aldehydes, and amines in the presence of a catalytic amount sulfonated porous carbon (spc). one of the important advantages of the new method is that the spc could be recycled and reused.
similar resources
Sulfonated Porous Carbon (SPC): An efficient and recyclable solid acid catalyst for one-pot three-component synthesis of 2,3-dihydroquinazolin-4(1H)-ones under solvent-free conditions
A simple and efficient procedure has been developed for the synthesis of 2,3-dihydroquinazolin-4(1H)-ones derivatives under solvent-free conditions. This method uses the condensation of isatoic anhydride, aldehydes, and amines in the presence of a catalytic amount Sulfonated Porous Carbon (SPC). One of the important advantages of the new method is that the SPC could be recycled and reused.
full textSulfonated Porous Carbon (SPC): An efficient and recyclable solid acid catalyst for one-pot three-component synthesis of 2,3-dihydroquinazolin-4(1H)-ones under solvent-free conditions
A simple and efficient procedure has been developed for the synthesis of 2,3-dihydroquinazolin-4(1H)-ones derivatives under solvent-free conditions. This method uses the condensation of isatoic anhydride, aldehydes, and amines in the presence of a catalytic amount Sulfonated Porous Carbon (SPC). One of the important advantages of the new method is that the SPC could be recycled and reused.
full textLactic acid, as an efficient catalyst for the one-pot three-component synthesis of 1-amidoalkyl-2-naphthols under thermal solvent-free conditions
For the first time lactic acid was applied as an efficient and green catalyst for the one-pot three-component synthesis of amidoalkyl naphthols via the condensation between arylaldehydes, 2-naphthol and amides or urea under thermal solvent-free conditions in good to excellent yields. We have demonestrated a mild and efficient eco-friendly tandem synthesis of amidoalkyl naphthols using lactic ac...
full textLactic acid, as an efficient catalyst for the one-pot three-component synthesis of 1-amidoalkyl-2-naphthols under thermal solvent-free conditions
For the first time lactic acid was applied as an efficient and green catalyst for the one-pot three-component synthesis of amidoalkyl naphthols via the condensation between arylaldehydes, 2-naphthol and amides or urea under thermal solvent-free conditions in good to excellent yields. We have demonestrated a mild and efficient eco-friendly tandem synthesis of amidoalkyl naphthols using lactic ac...
full textNano-Silica phosphoric acid: an efficient catalyst for one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones (thiones) under solvent-free or sonication conditions
Two simple protocols for the synthesis of three-component condensation reaction of an aldehyde, β-ketoester and urea or thiourea to obtain the 3, 4-dihydropyrimidin-2(1H)-ones (thiones) using nano silica phosphoric acid are reported. Short reaction times, high yields, reusability of catalyst and easy workup are some advantages of these protocols.
full textNano-Silica phosphoric acid: an efficient catalyst for one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones (thiones) under solvent-free or sonication conditions
Two simple protocols for the synthesis of three-component condensation reaction of an aldehyde, β-ketoester and urea or thiourea to obtain the 3, 4-dihydropyrimidin-2(1H)-ones (thiones) using nano silica phosphoric acid are reported. Short reaction times, high yields, reusability of catalyst and easy workup are some advantages of these protocols.
full textMy Resources
Save resource for easier access later
Journal title:
iranian journal of catalysisPublisher: islamic azad university, shahreza branch
ISSN 2252-0236
volume 2
issue 2 2012
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023